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Abstract. Effective disaster management is a core feature for the protection of communities against natural disasters such as 10 

floods. Disaster management organizations (DMOs) are expected to contribute to ensuring this protection. However, what 

happens when their resources to cope with a flood are at stake or the intensity and frequency of the event exceeds their 

capacities? Many cities in the Free State of Saxony, Germany were strongly hit by several floods in the last years and are 

additionally challenged by demographic change with an ageing society and outmigration leading to population shrinkage in 

many parts of Saxony. Disaster management which is mostly volunteer-based in Germany is particularly affected by this 15 

change, leading to a loss of members. We propose an agent-based simulation model that acts as a “virtual lab” to explore the 

impact of various changes on disaster management performance. Using different scenarios we examine the impact of 

changes in personal resources of DMOs, their access to operation relevant information, flood characteristics as well as 

differences between geographic regions. A loss of DMOs and associated manpower caused by demographic change has the 

most profound impact on the performance. Especially in rural, upstream regions population decline in combination with very 20 

short lead times can put disaster management performance at risk. Based on the results, we outline the implications for 

research as well as for the practice of disaster management in our concluding section.  

1 Introduction 

When floods hit a community, disaster management and emergency services have to act as quickly and effectively as 

possible to safeguard people and property. However, effective disaster management depends on several conditions, e.g. the 25 

availability of resources, the number of helpers or the effectiveness of communication and coordination. Another crucial 

aspect is time: if lead time (i.e. time between warning and occurrence of a flood) is too short or the time needed to put all 

necessary measures into place – the coping time (i.e. effective response time) – will be too long, disaster management might 

be unable to provide the necessary support and protection. Although disaster management has developed practical and well 

tested routines over many years of service, these routines might come under pressure under changing context conditions such 30 
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as increasing flood intensities, limited resources or changes in organizational structures. Worldwide disaster statistics show a 

strong increase in extreme events. Especially, weather-related events such as floods, storms and droughts have been 

occurring more frequently in the last decades (IPCC, 2012; Schuster, 2013). As a consequence, disaster events with a high 

magnitude are occurring more frequently. In just eleven years, for instance, the Free State of Saxony, Germany, has 

experienced three extreme flood events (2002, 2010 and 2013), of which two (2002, 2013) have exceeded the statistical 5 

return rate of one in one hundred years and caused damages of several billion Euro (Mechler and Weichselgartner, 2003; 

DKKV, 2015, p. 32). Besides this, a large proportion of the flood prone area in this region is currently undergoing major 

demographic transitions with an ageing society, out-migration and low birth rates leading to significant population shrinkage 

(BBSR, 2014). This shrinkage comes along with an economic decline, cutbacks in municipal finances and loss of urban 

functions, e.g. in the area of infrastructure. This also affects disaster management, as on the one hand, disaster management 10 

organizations (DMOs) are more often confronted with extreme events and need to provide higher degrees of support and 

protection. On the other hand, they need to fulfil their services with shrinking resources, not only in monetary terms, but 

especially in terms of manpower (Steinführer et al. 2014). Disaster management in Germany is largely based on organized 

but still voluntary bases (Ehrenamt) and is especially affected by a loss of members. This trend is strongest in the East 

German federal states, where e.g. voluntary fire brigades (Freiwillige Feuerwehr) have suffered a decline in numbers of 15 

active members of about 20000, respectively 9%, between 1997 and 2007 (Albrecht et al., 2010). Additionally, the 

functioning of DMOs might be negatively affected by changes in the employment situation of their members: even if in 

theory the operational units are still fully equipped, the actual operational readiness is often impeded by larger distances 

between workplace and hometown and a lower willingness of employers to grant their employees a release from their work 

(Metzmann, 2006). This can lead to understaffing of DMO units during a disaster event. 20 

This study addresses the effect of the mentioned processes of change on disaster management performance, using two 

regions in Saxony as exemplary study sites. Although we selected the Free State of Saxony as example region for our study, 

the just stated developments apply to other regions in Germany as well. Moreover, this region is very heterogeneous, so not 

every part is affected in the same magnitude of change. We will therefore also address the question of how disaster 

management performance is affected, depending on the local settings. To make this more explicit, we characterize each case 25 

site along two dimensions that affect the strength of impact of the floods on a community, namely the geographic (including 

hydrologic) and demographic settings.  

Analyzing how change in a single aspect affects the functioning of DMOs might be possible with a pen and paper exercise. 

However, when changes occur in parallel and in different intensity, their combined effects are not as easily foreseeable 

anymore. We therefore develop and apply a simulation model to determine the impact of change on the performance of 30 

disaster management, and estimate which conditions can lead to performance thresholds that put community protection at 

risk, e.g. under which circumstances a certain lead time threshold might not be reached anymore.  

Several modelling studies exist that address natural hazards and their influence on community functioning, ranging from pre-

disaster to post-disaster assessments. The complexity of these models ranges from more simple or conceptual models to very 
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complex models that are often used for prediction purposes. Models like the Life Safety Model (Lumbroso and Tagg, 2011) 

or MASSVAC (Hobeika and Jamei, 1985), for example, aim at predicting exact evacuation times for a specific disaster event 

or the expected loss of life. However, to achieve a good predictive power, these models require accurate input data. Other 

models are more conceptual or address specific issues of disaster management like information sharing between emergency 

personnel (Zagorecki et al., 2010) and the reliability of information in disaster relief operations (Kostoulas et al 2008), post-5 

disaster recovery (Nejat and Damnjanovic, 2012) with focus on housing recovery and how it relates to homeowners’ 

decision making or to the recovery of critical services and community capital over time (Miles and Chang, 2006; Miles and 

Chang, 2011).  

The model presented in this paper is not intended as a quantitative prediction tool but rather as an explorative tool in a 

“what-if”-manner, comparable to a flight simulator that is used to evaluate the performance and capacity of reaction of a 10 

pilot, both under normal and altered or extreme conditions, without putting pilots or passengers at risk. Likewise, disaster 

management organizations and other emergency services cannot exercise extreme events in real life, they can only plan for 

certain expectations (e.g. flood magnitude, resources needed) and develop action strategies in accordance with these 

expectations. When conditions change and these expectations fall short, the functioning of the organizations might not be 

guaranteed anymore. Our “flight simulator” approach is to develop a rather simple, stylized “virtual lab” (Seppelt et al., 15 

2009) that allows us to quickly implement new ideas and test hypotheses, to obtain a better mechanistic understanding of the 

system behavior. We therefore use a spatially explicit, agent-based modelling approach, as it allows to incorporate, 

explicitly, the micro-level decision making of actors and to observe their joint emergent behavior on a macro or system level 

(Holland, 1992) in their respective geographic context. Thus, agent-based models (ABMs) are suited to model the behavior 

of individual actors such as disaster management units that act independently to solve a common goal, i.e. protecting a 20 

community.  

We apply the model to two exemplary case sites in Saxony – Leipzig, as an example for an urban area and the Neisse region 

representing a more rural region – and try to answer the following questions: (1) Which dimension of change has the most 

profound influence on the performance of disaster management? (2) Can we identify bottlenecks or critical thresholds for the 

capacities of disaster management to ensure protection? (3) How do these thresholds depend on the regional geographic and 25 

demographic setting? 

2 Methods 

In this section, we will first describe the model structure, i.e. entities, processes, model rules and data used. Second, we 

explain how we measure performance of disaster management in the model. We then present a characterization of the 

geographic and demographic settings. The section ends with a description of the scenarios that we used to demonstrate the 30 

functionality and robustness of the model. 
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2.1 Description of the agent-based model 

The description of the model loosely follows the ODD+D protocol structure (Müller et al., 2013; a complete protocol can be 

found in the supplemental material). 

2.1.1 Overview 

Purpose The purpose of the model is to analyze the performance of disaster management and understand how it is affected 5 

by change (e.g. demographic, climatic, or technological). The model is designed for both scientists and stakeholders, as an 

exploratory tool to understand the functioning of disaster management under change and as a discussion tool to illustrate 

these results to experts, address possible shortcomings and highlight options for improvement. Entities, state variables, and 

scales There are three main entities in the model: disaster management organizations (DMOs), disaster sites and sandbag 

reserves. We have selected the case of sandbag logistics as an exemplary task that is conceptually simple, yet crucial for the 10 

flood protection of a community. DMO agents represent a group of members or distinct units of a disaster management 

organization that can work independently and autonomously to perform certain tasks that are assigned to them. Each agent is 

characterized by certain properties, e.g. group size, and is associated with a transportation vehicle that is characterized by a 

given sandbag transportation capacity (ranging from small trucks to low-loaders). Disaster sites and sandbag reserves are 

stationary entities with which DMO agents interact, e.g. via filling and distributing sandbags. Space is explicitly included, 15 

the spatial setting of rivers, flood prone areas and the street network are based on GIS data. Time is modelled in discrete 

intervals with one unit (tick) representing one minute. There is no fixed time horizon; a model run stops after all tasks are 

finished. A conceptual diagram of the model is shown in Fig. 1. Process overview and scheduling At the beginning of each 

simulation, each DMO agent is assigned a task. In the current model version, it is either to fill sandbags, transport sandbags 

or distribute sandbags. DMO agents will identify their nearest target site, which can either be a disaster site or a sandbag 20 

reserve (using the A* search algorithm, Hart et al., 1968; Goldberg and Werneck, 2005), move there and perform the 

required tasks. Agents can switch between tasks when necessary, e.g. when more helpers are needed for either filling or 

distributing sandbags. The simulation stops when the required amount of sandbags is present and distributed at all disaster 

sites. A flow chart of the general sequence of model processes is displayed in Fig. 2. 

2.1.2 Design concepts 25 

Theoretical and Empirical Background The model has been developed in order to depict the case of flood protection and 

disaster management in Saxony. Individual Decision Making DMO agents have to make decisions about  which disaster 

site should be handled in which order, based on their information access. Agents can switch between tasks, either when they 

completed their current subtask or when more helpers are needed for a different task. Sensing DMO agents have full 

knowledge about the spatial settings of the model. This means they know the location of all target sites (disasters and 30 

sandbags reserves). However, each DMO agent has a certain level of information access about the state of each site: full 
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knowledge indicates that they have complete knowledge about the state of all disaster sites at all times, i.e. how many 

sandbags are needed at which site and when tasks at a certain site or all sites are completed. The second level, partial 

knowledge, implies that they can only acquire their knowledge through direct contact, i.e. when they are at a site; after 

having acquired knowledge, agents remember it from then onwards. Interaction Direct interaction between agents does not 

take place in the current model version. However, agents interact indirectly in several ways: they are aware of where 5 

resources are needed and where not, e.g. they know if a disaster site is successfully protected. Heterogeneity Currently, 

within any single simulation all DMO agents are homogeneous in their properties. Stochasticity Disaster sites are randomly 

distributed at the beginning of each simulation. The order in which DMO agents act in each time step is determined 

randomly by the Netlogo ‘ask’ command. Observation For each simulation, the time needed to fulfil all tasks – the coping 

time – is measured as the main indicator of performance. When the model is run interactively (using the graphical interface), 10 

several variables can be monitored during a simulation run, e.g. the current distribution of tasks onto the DMO agents or the 

degree to which tasks are fulfilled.  

2.1.3 Details 

Implementation Details The model is implemented in NetLogo. A screenshot of the model interface with a sample 

simulation run is shown in Fig. 3.  15 

Flood characteristics and sandbag demand 

The model only includes the location of rivers and flood prone areas but does not employ a hydrologic model to simulate 

flood flow through the river. We translate flood intensity implicitly into a number of disaster sites and a total demand of 

sandbags that need to be distributed. Based on this total demand (e.g. 100,000 sandbags), the number of sandbags needed at 

each disaster site is calculated.  20 

DMO movement and decision making 

DMO agents have to decide a) which task and b) which target site to choose. In reality, DMOs rarely have the time to derive 

an optimal decision; they mostly rely on certain routines and past experiences (Kuhlicke 2010). In our model, DMO agents 

therefore employ simple heuristics in their decision making, based on their level of information access (partial or full 

knowledge) and their available resources (e.g. whether sandbag supply is sufficient or not). An example for a heuristic used 25 

by DMO agents is: 

If sandbags are loaded onto the transport vehicle: 

1. Locate the nearest target site X and calculate the route there. 

2. Move to the target site X. 

3. Unload all sandbags and distribute sandbags. 30 

4. If all tasks at site X are completed, mark site as finished, otherwise remember current state of the site. 
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The times needed for certain tasks, e.g. the filling or distribution of sandbags, is calculated based on estimates that serve as a 

calculation basis in disaster management. For example, one helper can fill about 80 sandbags per hour (taken from 

Taschenkarte Deichverteidigung, THW 2007). Likewise, estimates for travelling speeds of transport vehicles (minimum, 

maximum and average speed) are included in the model (a detailed table is available in the supplemental material). DMO 

agents can move along the transportation network to their target sites. Here, the model uses the A* search algorithm (Hart et 5 

al., 1968; Goldberg and Werneck, 2005) to determine the shortest paths to target sites within the spatial environment of the 

model. The algorithm is an extension of the popular Dijkstra search algorithm (Dijkstra, 1959) but is significantly faster.  

Initialization and Input Data Currently, there are two study sites implemented in the model, the city of Leipzig and the 

Neisse region. For both areas, spatial data for rivers, flood prone areas and the street network are imported from 

preprocessed GIS data layers. River and street network data are pulled from OpenStreetMap (Geofabrik, 2014), including 10 

road categories and associated speed limits. Flood prone areas are extracted from data of the Saxony State Office for 

Environment, Agriculture and Geology (Landesamt für Umwelt, Landwirtschaft und Geologie, LfULG, 2012). All data is 

initially simplified in ArcGIS to reduce complexity (e.g. reducing the number of nodes or approximating arcs with straight 

lines). 

2.2 Measuring performance 15 

The functioning and performance of disaster management, i.e. the provision of protection against the negative impacts of a 

flood, is a central part of making a community resilient. To measure the performance of the disaster management and its 

capacity to cope with a single disaster event, we use the coping time tcope. During a disaster operation, the degree to which 

protection measures are realized increases (Fig. 4A, black line), until all measures are put into place. We define this time 

span as the coping time tcope (Fig. 4A, bold light grey line). Only if this time is below a certain threshold (in most cases the 20 

flood lead time tlead, see Fig. 4A, bold dark grey line), the communities’ protection is guaranteed. Depending on the available 

resources, the coping time tcope can change, reflecting an increase or decrease in coping capacity. Additionally, the demand 

posed onto the organizations in terms of flood frequency and intensity can change too, possibly leading to a discrepancy 

between coping capacity and demand.  

For every scenario of change (detailed in section 2.4) we can measure coping time tcope and evaluate it with respect to the 25 

lead time tlead (or other critical time) threshold. A lower coping capacity leads to a slower realization of protection measures, 

represented by a slower rise of the protection measure fulfilment curve (Fig. 4B, black dashed line). If the coping time tcope 

exceeds the lead time threshold tlead (Fig. 4B, bold light grey dashed line), the community might be at risk as realized 

protection measures are below 100% when tlead is reached. In our analysis, we therefore measure the coping time tcope in each 

simulation, where one simulation represents the realization of one disaster event based on the boundary conditions and 30 

resource and demand settings of the current scenario. In each scenario, we can then determine how much change disaster 

management can endure and still have a coping time that enable DMOs to still provide the necessary protection.  
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2.3 Characterization of the geographic and demographic settings 

The selected study region, the Free State of Saxony, is very heterogeneous in both its geographic (including hydrologic) and 

demographic situation. Therefore, the impact of change can be different, depending on the specific local settings of the 

community of interest. This in turn can have different effects on disaster management performance.  

Geographic setting the geographic location of a community has strong implications for the occurrence of the flood, e.g. its 5 

lead time and the associated resources needed for flood protection. In the upper reaches, flash floods are more prominent 

occurring with relatively short lead times and high force and velocity, whereas downstream plain floods are more prominent 

often associated with longer lead time, lower low velocity, but much longer duration.  

Demographic setting the population size and its growth or shrinking rate are indicators for the availability of manpower for 

disaster management. In small towns or rural areas, the number of helpers that are deployable is usually lower than in urban 10 

areas. Additionally, rural areas are often affected by both population decline and ageing, whereas opposite trends can be 

observed in urban regions.  

To account for these differences, we characterize each case site along these two dimensions, as shown in Table 1. By taking 

these two dimensions as a basis, we can identify further combinations of settings that are relevant for the study region (e.g. 

rural and urban areas, towns along the upper or lower reaches of the rivers, etc.). Additionally, we can draw some inferences 15 

from these settings, such that urban areas usually have a dense transportation network that reduces travel times of disaster 

management, which is often the opposite in rural regions. When we compare disaster management performance with respect 

to change, we can then draw implications as well on these regional levels.  

2.4 Scenario description 

Change mainly affects two components of the system: disaster management and its capacities, e.g. via the number of 20 

available helpers or resources, and the disaster event, e.g. flood intensities that result in changed demand. We also structure 

our scenario analysis along these two dimensions, so that at first we analyze how a given flood event can be handled under 

changing organizational settings. We then investigate the effects of changes in the flood and demand settings. Table 2 shows 

a list of the change processes, their impacts on the system level and the affected model parameters with their range of 

variation. As a third analysis, all scenarios were carried out for two different spatial settings: a) the city of Leipzig in the 25 

north west of Saxony and b) the rural Neisse region between Zittau and Görlitz in the east of Saxony, adjacent the border to 

Poland (see also Table 1). These two sites have been selected as examples for an urban and a rural region where change has 

very different effects, e.g. population growth vs. shrinkage. Additionally, this comparison serves as a test of robustness, to 

see if the model is applicable to different spatial settings. For each parameter combination, 100 simulations have been run. 

The model results have been evaluated using the R Statistical Environment (R Core Team, 2014). 30 
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3 Results 

3.1 The influence of the number of DMOs 

For all conducted simulations, we measured the coping time tcope as an indicator of how well disaster management can cope 

with a certain disaster event. At first, we take a closer look at the relationship between coping time tcope, the number of DMO 

agents and their properties while leaving the flood settings constant (Sections 3.1 and 3.2). Here, we can observe a decline of 5 

coping time tcope with increased number of organizations NDMO (see Fig. 5). This general relationship holds across all 

parameter combinations and becomes especially evident on a double logarithmic scale: coping time tcope and number of 

disaster management organizations NDMO are apparently linked by a Power Law relationship, i.e.: 

𝑡𝑐𝑐𝑐𝑐  ∝ 1 𝑁𝐷𝐷𝐷⁄                 (1) 

The number of DMO agents NDMO is therefore a main determinant of the coping time tcope. Decreasing DMO numbers, e.g. 10 

due to demographic change, lead to increasing coping times. These coping times might exceed the flood lead time tlead, 

depending on the flood characteristics and geographical location of the community at risk. In Fig. 5, we have superimposed 

three different lead time tlead thresholds (72, 48 and 24 hours) to illustrate this relationship: To achieve a coping time below a 

72 hour lead time threshold, at least 10 DMO agents are needed in this setting. However, if this lead time threshold is only 

24 hours, already 33 DMO agents are needed to stay under this threshold.  15 

This strong relationship between coping time tcope and number of DMOs NDMO can be explained by the link between 

transportation capacity of DMOs and the time needed per trip to a target site, i.e. one trip from a sandbag reserve to a disaster 

site (and back). This results in a total number of trips that is split upon the number of DMOs present, thus the Power Law 

relationship. Based on these observations, we can reformulate this relationship as follows: 

𝑡𝑐𝑐𝑐𝑐 = 𝑐 ∙ 1
𝑁𝐷𝐷𝐷

(1−𝜀)               (2) 20 

log 𝑡𝑐𝑐𝑐𝑐 = 𝑦1 − (1 − 𝜀) log𝑁𝐷𝐷𝐷              (3) 

where ε and y1 = log c are parameters that can be derived by fitting the relationship to the data extracted from the simulation 

runs. Once the fitting formulas are determined, they can be used for calculating the critical minimum coping time tcrit that 

results for a given number of DMOs or, vice versa, calculating the minimum number of DMOs needed 𝑁𝐷𝐷𝐷𝑚𝑚𝑚  to achieve a 

certain coping time below the flood lead time tlead. Results for this are presented under section 3.3. 25 

3.2 Variation of DMO properties 

The general power law relationship between the number of DMO agents and coping time that we have shown in the previous 

section has been found to be robust when we change properties of the DMOs (not shown here). However, quantitatively we 

can observe large differences in the coping time when we vary a) the capacity and b) the information access of the DMO 

agents, as displayed in Fig. 6. With a larger capacity (increasing values on the x-axis), more sandbags can be transported in 30 

one round, i.e. one trip from sandbag reserve to disaster site and back, which effectively reduces the number of rounds that 
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are needed to achieve protection at one site. However, increasing the capacity also has its limits. As can be seen from Fig. 6, 

the largest increases in performance (i.e. reduction of coping time) are achieved for the doubling of the capacity from 250 to 

500 sandbags, whereas the subsequent capacity increases to 1000 and 2000 sandbags only achieve a smaller reduction. This 

suggests that there is a marginal utility where the costs involved in improving the capacity of a single DMO agent is not 

worth the obtained performance increase. Increasing the number of DMO agents is more effective, and especially for high 5 

numbers of DMOs (e.g. NDMO = 80), an increase in capacity results in almost no reduction in coping time.  

The way that DMOs have access to information about disaster sites also influences the coping time. With only partial 

knowledge, DMOs recognize the (demand) state of a disaster site only when they visit it. This potentially leads to 

unnecessary trips to sites. With full knowledge, DMOs know the state of all disaster sites at all times, so they avoid such 

unnecessary trips. The advantage of full knowledge is therefore especially evident when the number of disaster sites 10 

increases. Whereas in the case of only 10 disaster sites (Fig. 6, A-D), no substantial difference between both cases is 

observable, the reduction in coping time in the case of 80 disaster sites (Fig. 6, E-H) is quite large. We can even observe 

cases where better information access has the same effect as doubling the number of DMO agents, e.g. for NDMO
 = 40 and a 

transportation capacity of 500 sandbags (Fig. 6G), the average coping time for DMOs with full knowledge is equal to the 

coping time of 80 DMO units with the same capacity but only partial knowledge (Fig. 6H). 15 

3.3 Variation of the flood settings 

Changed flood settings can be translated in either higher demand for resources or manpower, or in shorter lead times. We 

have tested the performance of DMOs for different levels of demand in terms of a) the number of disaster sites and b) the 

total number of sandbags that need to be distributed. Variations in flood lead times have been considered in terms of the 

minimum number of DMOs 𝑁𝐷𝐷𝐷𝑚𝑚𝑚  needed to achieve a certain lead time tlead. The number is determined from fitting equation 20 

(3) to the coping times obtained from the simulation and results for this analysis are displayed in Fig. 7. The figure consists 

of two main parts, panels A-C and panels D-E, in which we compare two spatial settings. In this section, we will focus on 

analyzing panels A-C, the comparison of both panels will be presented in the following section.  

We see that, in general, the minimum number of DMOs 𝑁𝐷𝐷𝐷𝑚𝑚𝑚  increases when the lead time threshold tlead increases (Fig. 7B 

and 7C). This is not surprising, as with lower lead times, the same amount of tasks need to be solved in shorter time. 25 

However, this increase is non-linear: for high to medium lead times (48 h–24 h), the increase in DMOs needed is only subtle. 

But once we cross the threshold to very short lead times below 24 hours, the numbers increase sharply. In such areas, e.g. 

cities in the upper reaches of rivers, the number of disaster management organizations is the crucial factor that determines 

the performance of disaster management. 

Additionally, the increase depends also on a) the demand posed onto the DMOs, here in terms of the number of disaster sites, 30 

as well as b) the capabilities of the DMOs, in terms of their transportation capacity and information access. When we 

compare Fig. 7A and B, we see that the curves show a much steeper increase when DMOs only have partial knowledge (Fig. 

7A). Also, lower capacity (thin lines) and a higher number of disaster sites (orange and red lines) leads to an increase in the 
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minimum number of DMOs needed. However, when we look at Fig. 7B where organizations have full knowledge (i.e. they 

know the status of all disaster sites at all times), this increase is much more subtle. The role of information access is also 

reflected in the average distances moved by DMO agents (not displayed here): while for full knowledge, higher numbers of 

disaster sites lead to no noticeable rise of the distance moved, partial knowledge shows a strong increase here. A reason for 

this rise lies in the unnecessary extra trips that DMO agents carry out when their information about disaster sites is not up to 5 

date. Of course, the amount of such trips increases with a higher number of disaster sites. This shows that information access 

can play a large role to overcome either increased demands (higher number of disaster sites, shorter lead times) or 

shortcomings in resource supply (the number of DMOs = manpower). Especially the combination of full knowledge and 

high transportation capacity effectively eliminates the need for more DMO agents when the number of disaster sites 

increases, which becomes apparent from the overlapping bold lines in Fig. 7B. Full knowledge (Fig. 7B, thin lines) or high 10 

transportation capacity (Fig. 7A, bold lines) alone do not achieve this effect. 

3.4 Regional comparison 

The two case study sites that we compared, a) an urban area and b) a rural region, roughly have the same spatial extent (a) 35 

km x 31 km and b) 35 km x 23 km) but are very different in their geographic location, their demographic situation, and their 

infrastructure, e.g. the transportation network is much more dense in the urban area than in the rural region (see the maps in 15 

Fig. 7A and D). When we compare the performance of DMOs across both regions it should be noted at first that the general 

qualitative behavior of the model does, similarly as shown before, not change, which confirms that the model performance is 

robust also under different spatial settings. Comparing both regions quantitatively reveals some interesting results. At first, 

because of the differences in the transportation network, we would have expected larger differences in the average distance 

moved of the DMO agents. However, there is no noticeable difference in the full knowledge scenario, and only for partial 20 

knowledge we could observe a difference for large numbers of disaster sites, e.g. for NDisasters = 80, one DMO agent moves 

on average 250 km in the urban case and 300 km in the rural region (in one simulation run). When we compare the increase 

of minimum DMO numbers 𝑁𝐷𝐷𝐷𝑚𝑚𝑚  depending on the lead time between both spatial settings, we see that the general pattern 

is very similar in both regions, with only subtle increases in minimum DMO numbers 𝑁𝐷𝐷𝐷𝑚𝑚𝑚  for the full knowledge scenario 

(compare Fig. 7 C and 7 F). However, a more substantial increase can be seen in the rural region for the partial knowledge 25 

scenario, and at very short lead times (Fig- 7 E). Here, the limits in infrastructure seem to amplify the bottleneck of the 

number of DMOs needed. Particularly low transportation capacity of the DMO agents and a high number of disaster sites 

show a significantly larger amount of DMO agents needed when compared with the urban area: whereas approximately 200 

DMO agents are needed to ensure protection at 80 disaster sites and stay below a lead time of 12 hours in the urban area, the 

same task requires more than 330 DMO agents in the case of the rural region, an increase of 65%.  30 
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4 Discussion 

In this work, we present a “virtual lab” approach in the form of an agent-based simulation model in combination with a 

geographical information system to assess performance of disaster management under change in a spatially explicit way. As 

a main result we show that future performance of disaster management depends to a large degree on the demographic 

development, as manpower remains the most important resource, especially if flood lead times are very short (< 24 hours). 5 

Technological advances such as better information access or improved transportation capacities of DMOs can help to 

overcome performance deficiencies, but only up to a certain degree. 

4.1 Implications for disaster management 

The performance of disaster management is at stake when demand for protection and resources to cope and attain this 

protection are at a mismatch. Our model has shown that change can lead to such a mismatch on different levels. This 10 

becomes evident in our study region where we can observe a coincidence of change particularly in two dimensions: 

demographic change, leading to a decline in the number of disaster management organizations at hand, and climatic change, 

leading to an increase in flood frequency. Throughout all analyses demographic change has emerged as the factor with the 

strongest influence on the performance. In other words, under a “loss in DMOs scenario”, the performance that is expected 

from disaster management may no longer be guaranteed and even well established and tested routines might then fall short. 15 

Therefore, disaster management performance depends strongly on the differences in the demographic development, as well 

as in the flood characteristics due to geographical conditions, as described in Table 3: While performance is likely to be 

ensured in urban and downstream regions, performance is at risk in rural, upstream regions where lead times are short and 

population shrinkage leads to a decline in DMO numbers. Deficiencies in manpower can only partly be substituted with 

technological advances such as better information availability or increased transportation capacity. If we link these results 20 

back to our case study area of Saxony, a combination of short lead times and more rural areas can be found e.g. in the 

upstream area of the Mulde river. A more in-depth analysis of disaster management performance, its drivers and possible 

improvement options should therefore focus on this region. 

Despite the individuality of the spatial structure of the different study regions, the model results indicate strong robustness 

and therefore a certain transferability of the qualitative findings to other regions of the same type. The reason is that the 25 

spatial processes (here: transport) are averaging out the effects of small-scale spatial heterogeneities that is a well-known 

effect from spatial systems dynamics (Fahse et al. 1998; Frank and Wissel 2002; Banitz et al. 2016) . In consequence, rules 

of thumb for management can be derived (Frank 2004).  

4.2 Model limitations and future extensions 

Of course, the developed model is a simplification of the reality and is based on a number of strong assumptions. We only 30 

focus on one task in the current model – the filling, transportation and distribution of sandbags – and omit a range of other 
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tasks such as the evacuation of people or the protection and maintenance of critical infrastructure. This task of filling and 

distributing sandbags was chosen as it a) is relatively simple to represent in the model and b) demands a large amount of 

resources (both technical as well as manpower) during a flood event. The model also omits more complex control structures 

such as management authorities or operation control that are responsible for the coordination of all DMOs and their tasks in 

a real disaster event. Including all these elements and processes would lead to a highly complex model that might more 5 

accurately represent reality, but makes understanding key elements that drive the system performance nearly impossible 

(Sorenson, 2002). However, understanding these key elements and processes is the main goal of our model in the sense of a 

“virtual lab” approach. Highly complex models are also difficult to communicate, both to other researchers as well as to 

stakeholders and experts in disaster management. The virtual lab approach enables “computational experimentation” known 

as promising way of enhancing social learning, exploring chances and risks of upcoming developments, and assessing the 10 

effectiveness of potential counteractivities (Chapin et al. 2010; Folke et al. 2010). This finally helps building resilience that 

is well established in the context of social-ecological systems (Biggs et al. 2012), and here extended to disaster management 

organizations.  

In the context of disaster management, agent-based modelling is still relatively new, however a couple of innovative models 

have emerged in recent years. For example, Zagorecki et al. (2008) have developed an ABM focusing explicitly on 15 

information exchange and cooperation between organizations and conclude that more flexible communication and 

information sharing between agents leads to a more efficient response. It is especially notable that information sharing 

between lowest level agents is more efficient than only between high level agents (e.g. managers). This relates well to our 

assumption of “full information” where DMO agents have instant knowledge about the state of all disaster sites which could 

be compared to a very flexible and efficient information sharing between agents. While Zagorecki et al. (2008) focus on one 20 

very specific aspect of disaster management, Dawson et al. (2011) have developed a very detailed model of flood incident 

management to determine the risk of people being flooded under different hydrological and defense conditions and 

evacuation strategies. However, the model does only include citizens as agents and simulates their movement in response to 

flood warnings, not disaster management organizations. One strength of their model lies in the usage of only publicly 

available datasets so that the model is easily adaptable to other case sites. Even though less dependent on data, our model 25 

also only uses data from publicly accessible sources, facilitating an adaptation to a different regional setting.  

Besides a spatial adaptation, the modular setup of the ABM allows for an easy extension of regarding additional entities (e.g. 

management structures) or processes (e.g. evacuation). One planned extension of the model (with an existing prototype 

version) addresses a fairly recent process of change: the fast development of the internet and mobile communication 

technologies has made information exchange very easy and fast. Moreover, the rise of social networks such as Facebook or 30 

Twitter has enabled civilians to exchange knowledge and organize relief efforts besides or in addition to official practices 

carried out by DMOs. This has been especially visible during the 2013 flood where a surge of so called “unbound helpers” 

(ungebundene Helfer) that do not belong to any formal organization either followed the call for help or even organized 

themselves to help mitigating the consequence of the flood (DKKV, 2015, p. 166 ff). However, this self-coordination can 
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also have unanticipated effects when helpers betake themselves to wrong sites or carry out tasks single-handed that might be 

unnecessary or impede other tasks. Furthermore, the response of unbound helpers did not have the same intensity in every 

region: bigger cities benefitted much more from the willingness to help, whereas small towns or rural regions depended 

much more on DMOs alone. Therefore, a next-planned extension focuses on the effective coordination of unbound helpers, 

to determine when such helpers are useful to enhance the performance of disaster management and when not. Furthermore, 5 

we would like to include the possibility of infrastructure breakdown (e.g. road closures, bridge collapse) that can have 

significant impact on the performance as well as the attainability of certain protection goals. These extensions can contribute 

to making the model more realistic, still the current model has already proven to be both a robust as well as illustrative tool 

to investigate the impact of change on disaster management and highlight which future conditions might put its performance 

at risk.  10 
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Table 1. Characterization of geographic and demographic settings and comparison across the two study sites. 

Setting Characteristics Urban area 
Leipzig 

Rural region 
Neisse 

G
eo

gr
ap

hi
c 

Topography Mountainous / hilly or flat 
land / lowland 
Elevation  

Lowland Lowland 

River location Upstream / downstream Downstream Downstream 

Flood setting Flash floods or plain floods 
 
Duration 

Plain floods 
 
 
Usually long duration 
(up to several days) 

Plain floods  
(flash floods from 
smaller tributaries) 
Usually long duration 
(up to several days) 

D
em

og
ra

ph
ic

 

Size Town size 
Number of inhabitants 

Large city 
> 500.000  

Small towns 
< 5.000  

Population growth 
rate 

Growing / shrinking Significantly growing Shrinking 

Migration In- and out-migration trends Influx of young people Departure of young 
people, leading to an 
ageing society 

 

Table 2. Scenario overview, showing change processes, their impact and affected model parameters. 

Process Impact Affected model parameters Range of variation 

Demographic 
change 

Population decline  Number of DMOs NDMO 5–100 

Climate change Increased flood 
intensity 

Required total number of sandbags 50000–100000  

Number of disaster sites NDisaster 5–80  

Technological 
change 

Improvements in 
transportation  

Capacity of DMOs  
(# sandbags / DMO unit) 

250–2000  

 Better information 
availability 

DMO information access 
(knowledge of disaster sites) 

partial knowledge 
full knowledge 

 

  5 
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Table 3. Possible implications for disaster management performance in dependence of demographic and geographic settings. 

Disaster management performance Demographic & geographic setting 

 

Performance ensured 

Urban areas: high population density, population largely growing, dense 
infrastructure → high number of DMOs with availability of helpers ensured  

Downstream, lowland: plain floods, long flood lead times → sufficient 
preparation time to carry out protection measures 

Performance of DMOs is likely to be ensured.  

Performance uncertain 

Small to medium sized towns: no clear population growth / shrinking trend → 
DMO number depends on the specific town 

Downstream / middle reaches: mostly plain floods, medium flood lead times.  

Performance of disaster management depends on the specific local settings. 
Possible bottlenecks could be overcome by e.g. better information access or 
higher transportation capacity of DMOs. 

Performance at risk 

Rural regions / small towns: low population density, population shrinking, 
sparse infrastructure → low number of DMOs, availability of helpers likely to 
decrease 

Upstream, mountainous: flash floods, short flood lead times → limited 
timespan to install protection measures 

Performance of DMOs is likely to be at risk as resources (e.g. DMO numbers) 
are decreasing and demand (e.g. flood frequency) is likely to increase.  
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Figure 1. Conceptual diagram of the model. The model environment shows the entities and their relationships that are 

simulated in the model. The influence of change is incorporated via scenarios that allow us to change resources (e.g. 

available DMO units), demand (e.g. required amount of protection) and other boundary conditions. The performance of 

disaster management for each scenario is subsequently evaluated with respect to critical time thresholds (e.g. lead time).  5 
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Figure 2. Model flow chart showing the general temporal sequence of processes. Processes in the dashed box are carried out 

in each time step for each DMO (disaster management organization) agent. 
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Figure 3. Screenshot of the NetLogo model interface. The map shows a snapshot of a running simulation, with DMO agents 

moving along the street network and disaster sites in various states of protection. The green shaded area depicts a river 

section that is already protected whereas in the grey shaded areas sandbags are still needed at various sites. 

 5 
Figure 4: Measuring the performance of disaster management. Coping time tcope refers to the time needed to put all protection 

measures into place (light grey lines). Whether coping time is above or below the lead time threshold tlead (dark grey lines) 

determines whether community protection can be ensured or not. The black lines present the degree of fulfilment of 

protection measures. 
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Figure 5. General qualitative relationship between coping time tcope and number of DMOs NDMO. Coping time decreases with 

increasing number of DMOs following a Power Law relationship (as depicted in the smaller inset plot, showing the same 

data on a log-log scale). Dots represent results of single simulations, where overlapping dots result in darker colors. Black 

curve shows the fitted power law and the intersection with the 24, 48 and 72 hour threshold yields the minimum number of 5 

DMOs necessary to achieve that coping time. Results correspond to a flood setting of 40 disaster sites and a total demand of 

50000 sandbags. 
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Figure 6. The distribution of coping time depending on i) the number of DMOs (panels from left to right), ii) their 

transportation capacity (x-Axis) and iii) their information access (dark grey/light grey). Top panel row (A-D) and bottom 

panel row (E-H) correspond to 10 and 80 disaster sites, respectively.  

 5 
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Figure 7: Minimum number of DMOs NDMO

min  in dependence of the flood lead time tlead. The results are depicted for two 

spatial settings, an urban area (A-C) and a rural region (D-F). The maps for each region (A,D) show rivers (blue lines), flood 

prone areas (blue shaded area) and the transportation network (black and grey lines). The lines in the main graphs B, C and 

E, F are color-coded according to the number of disaster sites and their thickness shows the transportation capacity of the 5 

DMO agents. 
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